
MOOD2Be:

Models and Tools to design Robotic Behaviors

Davide Faconti

Autonomous System Group
Eurecat Centre Tecnològic

Barcelona, Spain

Final Report: April 2019

Acknowledgements

MOOD2Be received funding from the European Union’s Horizon 2020
Research and Innovation Programme under the RobMoSys project, under
grant agreement No 732410

1

1 Introduction

The goal of the project MOOD2Be is to create a set of open source libraries,
software tools and methodologies, which simplify the development of Robotics
Behaviors using ”Behavior Trees” (BT).

Behavior Trees are a better alternative to Finite State Machine; using a
Domain Specific Language, it is possible to easily create behaviors that are
composable, configurable and reusable.

Our C++ implementation offers both the type safety and efficiency of this
programming language and the flexibility of a scripting one; C++ is also the
most used programming language in robotics and it is therefore the ideal can-
didate to achieve a seamless integration with existing software.

In this document, we will present our software framework and discuss how
its meta-model and implementation were both designed from the ground up to
achieve four main goals: modularity, composability, reusability and the ability
to create reactive behaviors.

To achieve these goals, we leverage multiple concepts and best practices from
the domains of Model Driven Software Engineering (MDSE) and Component
Based Software Engineering (CBSE); the ”RobMoSys approach”, in particular,
played a key role in understanding how the solution proposed in this document
fits into the design of composable software systems.

This document will not describe in details what Behavior Trees are, since a
broad literature can be found about this subject; it will focus instead on what
makes the project MOOD2Be unique in the context of BT.

2 MOOD2Be and the RobMoSys approach

RobMoSys envisions an integrated approach built on top of the cur-
rent code-centric robotic platforms, by applying model-driven meth-
ods and tools

In many fields of software engineering, it is desirable to design systems from
reusable and maintainable modules. This is particularly true in robotics, where
a complete software system is usually composed by many different ”nodes” or
”components”.

Model Driven Development offers multiple advantages to the robotic com-
munity, where Component Based Software Engineering is already the de-facto
standard adopted by most of the robotic middlewares and frameworks. The
RobMoSys approach uses MDSE to achieve the following goals, among others:

1. Increased Composability: components can be rearranged in different
configurations.

2. Replaceable Components: it is possible to substituted a component
with another implementations that shares the same contracts and inter-
faces.

2

3. More Reusability: the same component can be reused in different projects
or context with little effort.

4. Reduction in Development Time: this is particularly true when we
look at the cost of the entire project, including deployment and mainte-
nance.

5. Predictable Properties: predictability is a fundamental requirement
for real-world applications.

6. Standardization of models and interfaces: strongly related to reusabil-
ity and composability.

7. Commodization of base components.

Furthermore, RobMosSys focuses on many additional goals such as: Quality
of Service, Certifiable Systems, Benchmarking, etc.

The seven benefits listed earlier are those that we consider particularly re-
lated to MOOD2Be. Our project has a symbiotic relationship with RobMoSys:
it learns from the latter to achieve these goals and, at the same time, it provides
a ready to use toolset that achieves these benefits in the context of Behavior
Design.

2.1 Separation of Roles and Concerns

Two key principles described in RobMoSys guided the development of our soft-
ware are:

• Good software design should achieve Separation of Concerns.

• Good architectures should achieve Separation of Roles.

The ”Separation of Concerns” is a well known principle in software. In
the context of CBSE, it means that we should keep decoupled the ”Five Cs”:
Computation, Configuration, Communication, Coordination and Composition.

The term ”Separation of Roles”, instead, refers to the fact that it should be
possible to clearly identify and decouple the activity of multiple ”roles” such as:
Domain Experts, System Integrators, Component Developers, etc.

Our project provides methodologies and tools to keep Coordination de-
coupled from other concerns: a ”robot behavior” is, in fact, nothing more than
a mechanism that coordinates and orchestrates the state of each software com-
ponent.

Similarly, our approach allows a good Separation of Roles, because it de-
couples the work of Component Developer and System Integrator from the one
of Behavior Designer. MOOD2Be aims to help Behavior Designers, enhancing
their ability to work independently and efficiently: implementing a robot be-
havior should not need domain specific knowledge nor advanced programming
skills.

3

Figure 1: Separation of roles in the RobMoSys context

In figure 1 we may notice as the concept of Skills is used to describe capa-
bilities of the system, from the point of view of the Behavior Designer.

Any particular system may provide a specific set of Skills, that are summa-
rized inside the Digital Datasheet.

2.2 Orchestration of Service-Oriented Components

How these recommendations are converted into practice in a Component Bases
software architecture?

A common anti-pattern that we observed very often in robotics, consists in
”spreading” a little bit of the business logic inside multiple components. This
makes the global behavior of the robot:

• Hard to introspect.

• Hard to debug.

• Difficult to modify.

Furthermore, this means that some components might be not reusable, be-
cause they contains a piece of business logic that is application-specific.

A better design pattern should use a single Coordinating Component that
orchestrate the others. this means that component should be more stateless and
be modelled as services.

4

Figure 2: Relation between an Action of the BT and a service-oriented compo-
nent.

This latter recommendation is the key to understand the relationship be-
tween a Coordinator based on Behavior Trees: if the software system is mostly
constituted for service-oriented components, the client code that invokes a cer-
tain service or remote routine should be contained inside the Actions of the
BT.

A simple example can be seen in figure 2: the orange boxes represent those
piece of software that is platform and framework dependent.

The Action MoveTo, in this case, is nothing more than a way to invoke the
execution of a callback; inside this callback we can find the specific implemen-
tation of the client that sends a query/request to a service, in this case to the
component that controls the position of the robot (MoveBase).

In terms of Communication Patterns, the default recommendation is to use
asynchronous queries to send requests to the server and receive feedback.

In behavior trees, this feedback must be interpreted as one of these three
states: SUCCESS, FAILURE or RUNNING.

3 Differences between Behavior Trees and Fi-
nite State Machines

Finite State Machines (FSM) are one of the most known paradigm to define
the behavior of either robots or software agents, such as Non-Player Characters
(NPC) in games; nevertheless, Behavior Trees grew in popularity in the last
decade.

Finite State Machines are affected by multiple problems which become ap-
parent only in real-world scenarios, where the number of transitions and condi-
tions is sufficiently large.

• A FSM having N states has potentially NxN state transitions.

• The number of state is related to the context of execution; therefore N
may grow very quickly.

• When adding or removing a state, it is necessary to change the conditions
of all other states that have transition to the new or old one.

• States are strongly coupled; this affects the reusability of previously de-
fined conditions and states.

5

• When the number of states is reasonably large, both the graphical and
textual representation of the entire behavior become too complex to be
understood by the designer.

These issues affect mostly humans, not computers. A software interpreter/ex-
ecutor can easily handle a large state machine, but a human will surely struggle
to understand and predict the overall behavior of the system.

In other words, the main problem with FSM is that the cognitive overhead
experienced by developers, more specifically Behavior Designers, quickly grow
with the number of states, becoming unmanageable.

Hierarchical Finite State Machines (HFSM) partly mitigate the problem of
reusability of subroutines and the combinatorial explosion of state transitions
that characterizes FSM, but they are still affected by strong coupling and a
limited grammar.

When we refer to ”limited grammar” we mean the expressiveness of its meta-
model and its ability to implement common design patterns.

In figure 3 a very simple FSM is represented: a robot will naively avoid
obstacles which can be detected either on its right or left side.

Behavior Trees address most of these problems, improving modularity and
reusability.

• They are intrinsically hierarchical. From a semantic point of view, any
Subtree represents a potentially reusable behavior.

• BT provides a much richer grammar that the developer can use and extend
to implement common design patterns.

• Both the textual and graphical representations are easier to ”read” for a
human, because the hierarchy is conveniently arranged from top to bottom
and the priority of nodes from left to right.

• BT uses primarily Actions instead of States; this approach matches more
closely the ”mental model” used to describe a behavior and it is more
consistent with the software interfaces offered by service-oriented archi-
tectures.

Using Behavior Tree, the previous example can be represented in a more
intuitive and less verbose way, as represented in figure 4 and 5.

The nodes where Obstacle Detection is implemented can be either a Condi-
tionNode, i.e. a leaf of the tree that can return SUCCESS or FAILURE, or a
DecoratorNode which will execute its child node only if the internal condition
is met.

It is worth repeating that the visual representation of the FSM is completely
arbitrary, whilst the respective position of the nodes in the behavior tree repre-
sents the order of execution/evaluation of children nodes.

6

Figure 3: A FSM with 3 states and 9 transitions

Figure 4: A BT where DetectObstacles is implemented as a ConditionNode

Figure 5: A BT where DetectObstacles is implemented as a DecoratorNode

7

4 Data Flow and Data Ports in Behavior Trees

According to the principle of Separation of Concerns, it is recommendable to
keep the Coordination of components decoupled from the Communication of
data between them. Unfortunately, this recommendation doesn’t take into ac-
count some important requirements of real world systems:

• Frequently, state transitions are possible only when a specific data is avail-
able; in other words, a specific input is a pre-condition to the execution
of an Action.

• Similarly, the post-condition of a state transition or Action could consist
in making a certain data available.

As a consequence, we can hardly imagine a useful Coordination framework
that doesn’t handle explicitly this contract between Actions/States. During
the development of BehaviorTree.CPP, it became apparent that a data port
meta-model was needed to explicitly address these requirements.

4.1 Input Ports as function arguments

One of the most basic Actions that we may ask a mobile robot to perform is
”GoTo” or ”MoveTo”.

Arguably, we may agree that it is unreasonable to create a specialized Action
for each location, such as ”GoToKitchen” or ”GoToLivingRoom”; this approach
would be hard to maintain and it would compormise reusability.

Many implementations of Behavior Trees use Blackboards to pass data and
states between nodes; a Blackboard is nothing more that a globally accessible
Key/Value storage, where the Key is usually a string.

An action such as ”GoTo” would read implicitly, i.e. in the source code of
its implementation, the location of the target from the Blackboard.

Syntax Description
1 GoToKitchen Destination hard-coded in the implementa-

tion.
2 GoTo(”kitchen”) A label that identifies a particular destination.
3 GoTo(0.3, 4.1, 0.7) Location represented as Pose2D (X, Y,

Theta).
4 GoTo({destination}) The string ”destination” is the key to be used

to find a Pose2D in the Blackboard.

Table 1: Different ways to parametrize the GoTo action.

Initially we addressed this problem using NodeParameters to configure a
generic Node. In a general purpose programming language, NodeParameters
would be the equivalent of arguments passed to a function, either by value or
by reference.

8

From a semantic point of view, NodeParameters share the same meta-model
of Input Ports; we will use further the latter name, because it is much more
consistent with the port model described in the next session.

4.2 The Data Ports Meta-Model

Blackboards are conceptually simple to understand and to implement, but they
hides some potential issues.

For instance, the entries of a Blackboard can be accessed directly (and im-
plicitly) in the source code; in other words, data flow is not modelled. As a
consequence, static analysis tools can’t be used to verify the correctness of a
tree.

For the same reason, whenever it is necessary to read/write a different entry
of the Blackboard, the source code of the Node must be modified.

In fact, a Blackboard is just a ”glorified” set of global variables and it is well
known that global variables may (and eventually ”will”) break encapsulation of
software modules.

Analogously, in the context of Behavior Trees and Blackboards, we need to
address the problem of name clashing in the Key/Value table

We want to be able to reuse Subtrees in many different scenarios and to
implement complex behaviors through hierarchical composition; unfortunately
multiple trees may use the same generic key name, such as ”target”, ”goal”,
”result”, ”pose”, etc., for different purposes.

To solve this issue, we propose a meta-model that formally defines Data
Ports and Data Flow as elements of the Node model:

1. The Blackboard is replaced by Input and Output Ports; these ports must
be defined explicitly in the model of the Node.

2. Any Port has a string identifier, called ”Key”.

3. Ports within the same Subtree are automatically connected when they
share the same Key.

4. Ports are strongly typed. Connected ports must have the same type and
type consistency can be checked both statically or at deployment time.

5. Ports sharing the same Key, but located in different Subtrees, will not be
connected automatically.

6. A parent tree can access the ports of a child Subtree only when explicit
connections are provided.

4.3 Example

In the example depicted in figure 6, we may notice that Output Ports pointing to
a certain Key are connect automatically to Input Ports using the same identifier.

9

Figure 6: Ports are connected by name, but only inside the same Subtree.

Figure 7: Ports must be remapped to connect different namespaces.

For instance the 3D pose computed by DetectObject is used as input of
the action Grasp.

The pair of actions GetMapLocation and MoveTo are connected in a
similar way, but the key ”pose” has in this case a different type (it is a 2D
coordinate) and must not be confused with the pose of the object.

Nevertheless, since the latter pair of actions are located inside a different
Subtree, no connections is established with the former pair, since each Tree/-
Subtree has its own namespace.

Two different colors were used to better visualize the namespaces.
If we need to connect a port in the parent Tree with another in the child

Subtree, we need to explicitly remap the ports, as shown in figure 7.
In this particular example the only way to connect GetMapLocation to

MoveTo is remapping explicitly the key ”map pose”, that is visible only in the

10

parent namespace, to ”pose”, that is located inside the child namespace.

5 Reactive Behavior Trees

Action could be synchronous, i.e blocking from the point of view of the caller,
or asynchronous. An asynchronous action returns the state RUNNING and
allow the tree to execute other Nodes or entire branches in parallel.

A particular set of ControlNodes should be used to create ”reactive behav-
iors”, i.e behaviors were asynchronous Action are aborted if the right conditions
are not met.

Figure 8: Check if robot is localized and emergency stop is pressed.

Our meta-model and the corresponding software framework discussed in sec-
tion 6 address explicitly the problem of concurrency.

Figure 8 contains an example of ReactiveSequence:

• ”MoveTo” is started only if ”RobotLocalized” return SUCCESS and ”Emer-
gencyStop” returns FAILURE.

• These two Conditions are executed repeatedly, as long as ”MoveTo” re-
turns RUNNING.

• If any of these conditions changes, ”MoveTo” is aborted.

6 Software library: BehaviorTree.CPP

BehaviorTree.CPP is a C++ implementation of the meta-models we de-
scribed.

The purpose of this software library is to wrap existing code into custom
Nodes of the tree and to simplify the creation of Behavior Tree Executors, i.e
Software Components that load a BT at run-time and execute it.

Custom Nodes are usually Actions, that the robot can execute through
Skills, or Conditions.

The framework provides also some extendable mechanisms to monitor, log
and debug the execution of a tree. Using C++ was a strategic decision; this

11

computer language is the most popular in the robotic community and this allows
the users to easily integrate the library with their legacy code.

Very often, FSMs and BTs are implemented using scripting languages such
as Python or Lua. This provides some important advantages:

• New scripts/behaviors can be modified and loaded at run-time, without
stopping, recompiling and restarting the main application.

• Using a dynamic language is more comfortable for Behavior Designers.

Unfortunately, this ”mixed language” approach often requires the creation
of ”binding code”; this might be a considerable entry barrier and/or overhead.

BehaviorTree.CPP solves this problem providing a scripting language, cur-
rently based on XML, to define both particular trees and models of custom
Nodes. The proposed work flow involves the following steps:

1. Either the Component Developer or the System Integrator creates once
the custom Nodes (Actions and/or Condition) in C++. These are highly
reusable and application-independent building blocks.

2. Behavior Designer can use the domain specific scripting language to com-
pose built-in and custom Nodes into hierarchically trees.

Since ports are connected at deployment time, i.e when the tree is instanti-
ated by the Executor, it is impossible to check these types at compilation-time.

On the other hand, the type-check can be performed at run-time, before ex-
ecuting the Behavior Tree for the first time; in the future, it should be relatively
easy to create a static analyzed that performs this operation off-line.

From the point of view of Model Driven Development, it is worth noting that
we took an unusual approach: instead of using the popular model-to-code
work flow or, in other words, implement code generation, we used template
meta-programming techniques in C++ to automatically generate the model
from the source code.

6.1 Implementation details

6.1.1 Factory and plugins

The design pattern known as ”Factory” is used to decouple the C++ imple-
mentation from the scripting language.

The Executor parses the textual representation of the Tree, allocates in-
stances of either custom or built-in Nodes and compose them into a tree.

Each Node type must be registered once into the Factory; this can be done
directly in the C++ code, using static linking, or at run-time loading new Nodes
from a set of plugins. We provide a simple and well documented way to create
create self-registering dynamic libraries which encapsulate the custom Nodes.

The Factory generates a model of the custom Nodes during the registration
phase.

12

6.1.2 Safe type erasure

In our meta model, Input and Output Ports are type-safe. This, in terms of
C++ code, means that we need to create an object contained that is both type-
erased and type-safe. We decided to use a modified version of std::any that was
tailored to provide few advantages, when compared with other implementations
of ”any”:

• Small Object Optimization (SOO): object smaller that 16 bytes can
be stored in-place without any memory allocation.

• String Optimization: storing a string requires only a single memory
allocation instead of two.

• Safe Numerical Conversion: the standard version of ”any” require
users to cast the value to the original type. Our implementation is less
strict and allows conversion between numerical numbers, as long as there
is no underflow, overflow or loss of numerical precision.

An important implication of this approach is that, since input ports can
read the actual value of a port from the XML file, the developer must provide a
simple parsing mechanism to convert a string into a custom type. This can be
done providing the template specialization of the function convertFromString
as shown in the following code sample.

// We want to be able to use this custom type

struct Pos2D

{

double x;

double y;

};

// Template specialization to parse Pos2D from string

namespace BT {

template < > Pos2D convertFromString(StringView str)

{

// Real numbers separated by semicolons

auto parts = splitString(str, ';');

Pos2D output;

output.x = convertFromString<double>(parts[0]);

output.y = convertFromString<double>(parts[1]);

return output;

}

} // end namespace BT

6.1.3 Logging and monitoring with Observers

The library implements the Observer Pattern to monitor the state transitions
of each Node of the tree.

13

This mechanism can be used to build two families of tools, which collect
information from the Executor in a non intrusive way:

• Loggers, which once ”attached” to a tree can record any single state.

• Monitors, that are used to publish in real-time state transitions to ex-
ternal applications.

The library provides, out of the box, few Loggers and Monitors that the
developers can use to record, analyze or replay the execution of a tree.

These tools are particularly useful when used together with Groot, that will
be described in the next session.

7 Groot: Integrated Development Environment
for BTs

One of the main goals of MOOD2Be project was to improve the productivity
of the Behavior Designer. For this reason, we developed Groot, a Integrated
Development Environment (IDE) that can be used to either create, edit, monitor
or debug Behavior Trees.

The designer composes the tree using a palette of built-in and/or custom
Nodes, using an intuitive and modern drag-and-drop graphical interface.

It is worth mentioning that Groot is not a BT Executor itself. The con-
nection point between the graphic application and the software component con-
taining the executor is suaully the XML file containing the representation of the
tree.

The XML representation was designed to be ”human readable”, i.e easy to
edit manually a textual editor. Therefore, Groot is completely optional in terms
of work flow.

Ironically, we may even say that Groot is a ”fancy XML editor” rather than
an IDE.

But, when we think about other formats such as HTML, it becomes apparent
that even when textual editors are sufficient or even faster to use to quickly edit
a portion of the file, domain-specific graphical tools can improve development
speed and lower the entry barrier perceived by early adopters.

To better understand the relationship between Groot and the Executor, we
should refer to the diagram 10:

• Custom Nodes are implemented in C++ and compiled as dynamic libraries
(plugins).

• These plugins can be loaded either by the Executor or by Groot; the latter
will extract the Node model from the plugins.

• Once Groot has loaded the models of the Nodes, the latter can be com-
posed into trees and subtrees, which are saved using the XML format.

14

Figure 9: Groot in Editor mode

Figure 10: Relation between Groot and the C++ Executor

15

• The Executor can load the XML file, instantiate the tree and start exe-
cuting it.

• Furthermore, the Executor can publish state transitions in real-time us-
ing a TCP socket; Groot can subscribe to this information remotely and
monitor the state of the tree.

• All the state transitions can be recorded and visualized step by step off-
line, using a binary log file generated by the Executor.

7.1 The ”Chicken or Egg” dilemma

What comes first, the model or the implementation?

One of the main challenges (and theoretical dilemma) that was made ap-
parent by Groot, was that the model representation of a custom Node, used by
the graphic interface, and the actual binary implementation, built using Behav-
iorTree.CPP, must be kept synchronized.

At the beginning, during the conceptual phase, it is convenient to create from
scratch the model of the custom Nodes, even if there isn’t any corresponding
C++ implementation and/or associated plugin.

This allow the user to quickly prototype a tree, reason about the logic and
share ideas with other people in the development team.

But, as a consequence, it becomes up to the developer to ensure that this
manually created models remain in-synch with the actual implementations.

This intrinsic problem can be mitigated in the future by better tools, being
a ”model repository” built on top of a distributed database, the most promising
approach.

8 Results and KPI

The project MOOD2Be proposes a new kind of BT design that allows users to
create reusable, reactive and hierarchical robot behaviors.

Even if we present in this document an innovative meta-model, the main fo-
cus of this R&D project has always been ”development” rather than ”research”.
In fact, we believe that well documented, mature and industrial-grade tools can
have a more significant and positive impact in the robotic community than pure
theoretical results.

In other words, the main Key Performance Indicator (KPI) of our project is
the impact in the community and the rate of adoption.

During the execution of the project, our software framework and methodol-
ogy has been used in multiple projects, both internally by our team or externally.

We released our open source software relatively early on Github and this
allowed us to receive a very valuable feedback from other experts in the robotic
community.

16

We are happy to admit that the current Input/output Port model, that is
probably the most note-worthy innovation in our meta-model, is the result of
an open minded discussion with the community.

Both Behaviortree.CPP and Groot are experiencing, at the time of writing,
a good ”traction” in terms of number of downloads, active contributors and
number of users.

One of the KPI initially proposed was a measurable reduction in the devel-
opment time; after one year of work, we don’t have any strong argument or data
that can support the fact that this specific goal has been achieved.

On the other hand, when the role of Coordination and Orchestration in a
Component Based software system is understood by the developer and promoted
by a specific software framework, we observed that each of the components in
the system becomes more reusable and well encapsulated than it was initially.

In other words, we may say that a nice side-effect of our approach is a system
wide improvement in terms of modularity.

9 Final remarks

This project taught us an important lesson: to impact a community, we should
be open to new ideas, listen to opinions different than ours and understand what
user really need.

We, developer and researchers, focus too often on teaching what we consider
the ”right” solution to others, rather than learning from them.

Non-functional requirements such as documentation and support can make
a huge difference and are too often neglected in many research projects.

Our constructive feedback to the RobMoSys project is that their proposed
methodologies provide a useful ”mental framework” that help us reasoning
about reusability and composability, but there are also recommendation and
abstractions that are difficult to use in practice.

For instance, our Behavior Tree meta-model used to have poor composability
when we tried to keep the concepts of Data Flow completely decoupled from
Coordination; these two software Concerns, in our opinion, need to be modelled
together, to be useful in practice.

About the Separation of Roles, our experience revealed that we can hardly
implement an idealized work flow where Skills are defined by Domain Experts,
implemented by Component Developers and composed by Behavior Designers.

In practice, behaviors are the result of a two-ways and iterative dialog be-
tween these experts, rather than one-way pipeline where models and artifacts
are made available using a top-down approach.

The Skills themselves are, in our opinion, an abstraction that might be too
”coarse grained”, because being as general as possible, they may fail to take into
account specific corner cases that only the Behavior Developer or the System
Integrator may be able to understand and/or predict.

17

